Linking snowflake microstructure to multi-frequency radar observations
نویسندگان
چکیده
[1] Spherical or spheroidal particle shape models are commonly used to calculate numerically the radar backscattering properties of aggregate snowflakes. A more complicated and computationally intensive approach is to use detailed models of snowflake structure together with numerical scattering models that can operate on arbitrary particle shapes. Recent studies have shown that there can be significant differences between the results of these approaches. In this paper, an analytical model, based on the Rayleigh-Gans scattering theory, is formulated to explain this discrepancy in terms of the effect of discrete ice crystals that constitute the snowflake. The ice crystals cause small-scale inhomogeneities whose effects can be understood through the density autocorrelation function of the particle mass, which the Rayleigh-Gans theory connects to the function that gives the radar reflectivity as a function of frequency. The derived model is a weighted sum of two Gaussian functions. A term that corresponds to the average shape of the particle, similar to that given by the spheroidal shape model, dominates at low frequencies. At high frequencies, that term vanishes and is gradually replaced by the effect of the ice crystal monomers. The autocorrelation-based description of snowflake microstructure appears to be sufficient for multi-frequency radar studies. The link between multi-frequency radar observations and the particle microstructure can thus be used to infer particle properties from the observations.
منابع مشابه
Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall
[1] Recent modeling results have indicated that, in general, idealized homogeneous spheroidal models of ice crystals and snowflakes cannot consistently describe radar backscattering from snowfall when the radar wavelengths are on the order of the snowflake size. In this paper, we provide empirical evidence supporting this prediction by analyzing collocated airborne radar measurements at 13.4 GH...
متن کاملFinnish Meteorological Institute Contributions No. 93 Impact of the Microstructure of Precipitation and Hydrometeors on Multi-frequency Radar Observations
متن کامل
Radar signatures of snowflake riming: A modeling study
The capability to detect the state of snowflake riming reliably from remote measurements would greatly expand the understanding of its global role in cloud-precipitation processes. To investigate the ability of multifrequency radars to detect riming, a three-dimensional model of snowflake growth was used to generate simulated aggregate and crystal snowflakes with various degrees of riming. Thre...
متن کاملAccurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods and Polarimetric Radar
This article proposes and presents a novel approach to the characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced optical disdrometers for microphysical and geometrical measurements of ice and snow particles (in particular, a multi-angle snowflake camera—MASC), image processing methodology, advanced method-of-moments scattering computati...
متن کاملRetrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements
Current methods for retrieving SWE (snow water equivalent) from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm). The use of SAR (Synthetic Aperture Radar) at suitable frequencies has been suggested as a pot...
متن کامل